新聞資訊
為您分享嘉遠最新動態
在核反應堆安全防護、癌癥治療等領域,一種名為“硼-10酸”的化合物正悄然扮演關鍵角色。然而,圍繞它的“豐度”與“純度”兩個指標,卻常令公眾困惑。這兩者究竟有何區別?為何科學家要像“雕琢鉆石”般嚴苛對待它們?本文將揭開這一科學謎題。
硼在自然界中并非“獨生子”,而是以兩種同位素形式共存:硼-10(1?B)和硼-11(11B),天然豐度分別為約19.1%和80.9%。兩者化學性質幾乎相同,但核特性天差地別——硼-10對中子具有極強的“吞噬”能力,是核反應堆控制棒、防輻射材料的核心成分。

豐度(Isotopic Abundance)特指硼-10在總硼元素中的占比。例如,天然硼酸的硼-10豐度為19.1%,而核工業級硼-10酸需通過氣體離心法或化學交換法濃縮至96%以上。豐度每提升1%,其中子吸收效率可能呈指數級增長,堪稱“核能安全的第一道閘門”。

如果說豐度是“質量”的比拼,化學純度(Chemical Purity)則是“潔凈度”的較量。它衡量的是硼酸(H?BO?)中非硼物質(如金屬離子、有機物、其他酸類)的含量。例如,試劑級硼酸純度可達99.999%,而工業級可能僅為99%。
在硼中子俘獲治療(BNCT)中,純度不足的硼酸若含重金屬雜質,可能毒害患者細胞;在半導體制造中,鈉離子超標會直接導致芯片性能劣化。因此,高純度需依賴重結晶、離子交換等精細工藝實現。
1核電站控制棒
* 高豐度:確保快速吸收中子,防止鏈式反應失控。
* 高純度:避免雜質(如氯離子)腐蝕金屬包殼,釀成泄漏事故。
2癌癥靶向治療(BNCT)
* 高豐度:提升硼-10捕獲中子的概率,精準殺死癌細胞。
* 高純度:杜絕有毒雜質,保護健康組織。
3半導體摻雜工藝
* 特定豐度:調節硼-10/11比例可改變硅晶電導特性。
* 超高純度:單顆塵埃就能毀掉整片晶圓。
長期以來,高豐度硼-10酸被歐美壟斷,價格高達每克數百美元。近年來,我國通過激光同位素分離技術,將豐度提升至99%以上,同時采用超臨界流體提純,將雜質控制在ppb(十億分之一)級。2023年,中核集團宣布實現公斤級高豐度高純硼-10酸自主量產,成本降低90%,為第四代核電站及BNCT設備國產化鋪平道路。
從同位素豐度到化學純度,硼-10酸的“雙標挑戰”折射出人類對物質操控的極致追求。在原子與分子的尺度上,每0.1%的提升都可能改寫一個產業的命運。未來,隨著量子計算、核聚變等領域的崛起,這場“精準戰爭”只會愈演愈烈。而在這場戰爭中,科學家的每一克努力,都在為人類文明點亮新的可能。

UAN尿素硝銨是什么?農用有什么優勢?怎么使用效果更好?
UAN尿素硝銨迎合了當下快速發展水肥一體化需求,為傳統尿素、硝銨企業提供破局之道。但是不少農戶朋友對它的了解并不多,今天小編就來和大家聊聊UAN尿素硝銨!UAN尿素硝銨是什么?尿素硝銨溶液,簡稱UAN溶液,國外也稱為氮溶液(Nsolution),是由尿素、硝銨和水配制而成。在尿素硝銨溶液中,通常硝態氮含量在6.5~7.5%,銨態氮含量在6.5~7.5%,酰胺態氮含量在14~17%。UAN尿素硝銨農用有什么優勢?1、穩定硝酸銨原料,作為固體原料存在危險性,但與尿素配成尿素硝銨溶液后,消除了它的可燃性和爆炸性,十分,是一種常壓下的穩定產品,對設備和操作要求均比氨水低。2、多種氮源尿素硝銨溶液將三種氮源集中于一種產品,可以發揮各種氮源的優勢。硝態氮可以提供即時的氮源,供作物快速吸收。3、延長肥效銨態氮一部分被即時吸收,一部分被土壤膠體吸附,從而延長肥效。尿素水解需要時間,尤其在低溫下通常起到長效氮肥的作用。為減少氮的淋溶損失,現在在尿素硝銨溶液中通常會加入硝化抑制劑和脲酶抑制劑。UAN尿素硝銨怎么使用效果更好?尿素硝銨溶液提供的是氮肥,適合各種植物。一般建議做追肥使用。稀釋倍數在50-100倍,苗期濃度稀,旺盛生長后濃度高。葉片噴施建議稀釋100倍以上。由于兌水施用后大幅度提高氮的利用率,用量上可以比常規尿素用量減少一半。施用原則是少量多次,每次每畝3-5公斤。通過灌溉系統用時特別注意不要過量灌溉,只濕潤根區為宜,否則會造成氮的淋失,降低肥效。我司主推的UAN液體肥料優勢顯著:含三態氮(硝態、銨態、酰胺態),利用率高達90%,是傳統尿素的4-5倍;100%水溶,適配滴灌/噴灌,減少施肥次數;安全穩定無爆炸風險,環保減排;促作物生長,小麥/玉米增產10%-15%,品質提升,符合“雙碳”目標,適配多種作物與土壤。歡迎您隨時咨詢!
查看更多
2025-12-16
光學玻璃:現代光學技術的核心材料,賦能高端制造與精密儀器
光學玻璃,作為一種以高純度硅酸鹽、硼酸鹽、磷酸鹽為基礎并摻入特定稀有元素制成的特殊材料,憑借其優異的光學性能,已成為制造各類光學儀器與元件的關鍵基礎材料,廣泛應用于科研、工業、醫療及消費電子等多個前沿領域。多元分類滿足不同需求根據成分、性能及工藝的不同,光學玻璃呈現出豐富的種類。按成分主要分為常見的硅酸鹽玻璃、具有高透光低色散特性的硼酸鹽玻璃以及熱穩定與化學穩定性突出的磷酸鹽玻璃。按光學性能,則涵蓋高折射率、低折射率、低色散與高色散等類型,以滿足如高倍顯微鏡、高清相機鏡頭設計或光學系統色差校正等不同精密需求。制造工藝上,熔制、壓延和拉制等不同方法,分別適用于制造常規光學元件、薄片狀元件及光纖等特定形態產品。此外,防反射涂層玻璃、偏振片玻璃等具備特殊功能的產品,進一步拓展了其應用場景。卓越特性奠定應用基石光學玻璃的核心特性為其廣泛應用提供了堅實支撐:光學性能卓越:具備特定的折射率與較低的色散性,這對透鏡、棱鏡等元件的成像質量至關重要,能有效減少色散,保持圖像清晰。物理化學性質穩定:良好的熱穩定性使其能在寬溫域內保持性能;優異的化學耐腐蝕性確保了在復雜環境下的長期可靠使用。透光性極佳:對可見光與紫外線的高透過率,保證了光學儀器高效、清晰地傳遞光信號與圖像信息。加工適應性好:可通過切割、研磨、拋光等工藝靈活制成各種形狀與精度要求的元件,適應多樣化設計需求。廣泛應用驅動技術發展憑借上述特性,光學玻璃已成為多個高科技領域不可或缺的材料:光學鏡片與系統:是制造透鏡、棱鏡、反射鏡等核心鏡片的基礎,廣泛應用于相機、望遠鏡、顯微鏡等成像設備。激光技術:用于制造激光器中的倍頻晶體、透鏡、窗口等,對激光的生成、調控與傳輸起到關鍵作用。光學濾波與涂層:用于生產各種光學濾波器,實現對特定波長的選擇與控制;表面鍍制反射、增透、偏振等涂層,以優化光學器件性能。光學窗口與防護:作為光學系統的視窗,在允許光線透過的同時,保護內部精密部件免受環境損害。交叉領域滲透:在光譜分析、光纖通信、醫療器械乃至消費電子等領域,光學玻璃都發揮著重要功能,持續推動相關行業的技術進步。光學玻璃的持續發展與創新,正不斷助力光學技術向更高精度、更復雜功能邁進,為科技創新和產業升級提供著基礎而關鍵的 material support。
查看更多
2025-12-10
破解算力“散熱焦慮”:國產高端冷卻液實現全鏈條自主,成本大降
一、技術突破:性能對標國際巨頭,成本優勢顯著國內自主研發的冷卻液(包括全氟聚醚、氫氟醚等)實現純度99.9999%的突破,關鍵性能指標如導熱性、絕緣性、化學穩定性均達到3M同類產品水平。其核心創新包括:材料配方:通過分子結構優化,使氟化液工作溫域覆蓋-50℃~200℃,適配高密度算力芯片散熱需求;成本控制:依托螢石-氫氟酸-氟化液全產業鏈布局,生產成本較進口產品低30%,售價僅為3M的1/4;環保替代:開發無PFAS(全氟烷基物質)配方,符合歐盟REACH法規要求,填補3M退出市場后的空白。二、產能與產業鏈協同已建成千噸級氟化液生產裝置,可滿足全國35%以上的浸沒式液冷需求。其產能優勢體現在:垂直整合:原料氫氟酸自給率超90%,冷卻液生產成本較外購企業低33%-37%;快速擴產能力:基地利用低價能源(電價成本降30%),可快速復制生產線;高端應用儲備:電子級氟化液通過大牌認證,用于晶圓蝕刻環節來源:雪球
查看更多
2025-12-08
嘉遠參會綠色氟化工論壇:聚焦行業綠色與智能轉型
論壇上展示的AI輔助環保材料設計案例,為嘉遠團隊的技術路線思考提供了新的參照。2025年11月26日,嘉遠公司技術團隊赴廈門參加了第六屆綠色氟化工技術協同創新論壇。本屆論壇以 “綠色智造·鏈動未來” 為主題,聚焦于氟化工產業在“雙碳”背景下的可持續發展路徑。技術前沿與綠色實踐論壇的技術分享集中于兩大方向:綠色生產工藝與智能化創新。AI 賦能創新:上海大學教授解讀《AI 賦能綠色氟化工:分子智造驅動的環保氟膜技術與未來電子封裝》;新材料突破:中科院上海有機所研究員分享《一些含氟功能材料的創制及其應用》,東華大學教授解析《無色透明含氟聚酰亞胺薄膜的制備及其應用技術》;綠色技術實踐:浙江力久環境帶來《無水氟化氫凈化除砷新技術的應用》,天俱時集團分享《從 “氟” 到安,向 “綠” 而行 —— 基于本質安全與綠色智造的新一代氟化工 EPC 工程創新實踐》;合規與應用:通標標準范儒解讀《歐盟電池法規背景下,電池產業鏈的合規挑戰與應對措施》,探討《全氟聚醚在數據中心液冷領域的應用》。嘉遠團隊的參會收獲作為參會者,嘉遠團隊重點關注了與自身發展相關的領域,核心收獲明確:技術方向:明確了AI輔助研發在材料創新中的潛力,以及具體的綠色生產改進技術。合規前瞻:了解到歐盟電池法規等國際環保政策動向,為產品規劃提供了預警。行業洞察:通過與同行交流,感知到行業向綠色化、智能化雙軌轉型的共識與迫切性。未來展望通過此次論壇,嘉遠團隊認識到,綠色與智能已不僅是行業趨勢,更是企業未來競爭力的核心。團隊計劃將此次獲取的行業洞察進行內部轉化,評估其在具體研發與生產優化中的應用可能性,以務實推動公司的技術升級。
查看更多
2025-12-04